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Abstract: A mathematical technique or methodology that deals with the finding of maximal or minimal of functions in 

some feasible searching space or region is called as Optimization. Every business or industry is involved in solving 

optimization problems. Some different varieties of optimization processes compete for the best minima solution. 

Particle Swarm Optimization (PSO) is a relatively new, advanced, and powerful method for optimization that has been 

empirically tested on many optimization problems and it perform well in solving those optimization problems. PSO is 

widely used to find the global optimum solution in a complex searching space. This work is focused on providing a 

review and discussion of the most established results on PSO algorithm as well as exposing the most active research 

topics that can encourage the practitioner for future work with improved results by applying little effort .This work 

introduces a theoretical concepts and some detailed explaining of the PSO algorithm, its advantages and disadvantages, 

judiciary selection of the various parameters with their effects. Moreover, this dissertation discusses a study of 
boundary conditions with the invisible wall technique, controlling the convergence behaviours of PSO, discrete-valued 

problems, multi-objective PSO, and applications of PSO. Finally, this work presents some kinds of improved versions 

as well as recent progress in the development of the PSO, and the future research issues are also discussed. 
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I. INTRODUCTION 

 

The Particle Swarm Optimization algorithm (abbreviated 

as PSO) is a novel population-based stochastic search 

algorithm and an alternative solution to the complex non-

linear optimization problem. The PSO algorithm was first 

introduced by Dr. Kennedy and Dr. Eberhart in 1995 and 

its basic idea was originally inspired by simulation of the 

social behaviour of animals such as bird flocking, fish 

schooling and so on. It is based on the natural process of 
group communication to share individual knowledge when 

a group of birds or insects search food or migrate   and so 

forth in a searching space, although all birds or insects do 

not know where the best position is. But from   the nature    

of the social behaviour, if any member can   find out a 

desirable path to go, the rest of the members will follow 

quickly. 

The PSO algorithm basically learned from animal’s   

activity or behaviour to solve optimization problems. In 

PSO, each member of the population is called a particle 

and the population is called a swarm. Starting with a 
randomly initialized population and moving in randomly 

chosen directions, each particle goes through the searching 

space and remembers the best previous positions of itself 

and its neighbours. Particles of a swarm communicate 

good positions to each other as well as dynamically adjust 

their own position and velocity derived from the best 

position of all particles. The next step begins when all 

particles have been moved. Finally, all particles tend to fly 

towards better and better positions over the searching 

process until the swarm move to close to an optimum of 

the fitness function. 

 

 

The PSO method is becoming very popular because of its 

simplicity of implementation as well as ability to swiftly 

converge to a good solution. It does not require any 

gradient information of the function to be optimized and 

uses only primitive mathematical operators. 

As compared with other optimization methods, it is faster, 

cheaper and more efficient. In addition, there are few 

parameters to adjust in PSO. That’s why PSO is an ideal 
optimization problem solver in optimization problems. 

PSO is well suited to solve the non-linear, non-convex, 

continuous, discrete, integer variable type problems. 

Swarm intelligence (SI) is based on the collective 

behaviour of decentralized, self-organized systems. It may 

be natural or artificial. Natural existing examples of SI are 

ant colonies system, schooling of fishes, bird flocking, bee 

swarming and so on. Besides multi-robot systems, some 

computer program for tackling optimization and data 

analysis problems are examples for some human artifacts 

of SI. The most successful SI techniques are Particle 
Swarm Optimization PSO and Ant Colony Optimization 

(ACO). In PSO, each particle flies through the 

multidimensional space and adjusts & updates its position 

in every step with its own individual experience and that 

of peers toward an optimum solution by the entire swarm. 

Thus the PSO is a member of the Swarm Intelligence. 

 

1.3 Objectives 

This dissertation aims to answer the following questions: 

Q.1: How can premature convergence and stagnation 

problems in the PSO algorithm be prevented? 
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Q.2: When and how particles are again able to reinitialize? 
Q.3: For the PSO algorithm, what will be the consequence 

if 

a) The maximum velocity Vmax  is too large or small? 

b) The acceleration coefficients c1 and c2 are equal or not? 

c)  The acceleration coefficients c1 and c2 are very large or 

small? 

Q.4: How can the boundary problem in the PSO method 

be solved? 

Q.5: How can the discrete-valued problems are solved by 

the PSO method? 

This paper is based on answering these questions in a 
briefs descriptions. 

 

Optimization: Optimization determines the best-suited 

solution to problem under given circumstances. For 

example, a manager needs to take many technological and 

managerial plans at several times. The final goal of the 

plans is either to minimize the effort required or to 

maximize the desired benefit. Optimization refers to both 

minimization and maximization tasks. Since the 

maximization of any function is mathematically equivalent 

to the minimization of its additive inverse, the term 

minimization and optimization are used interchangeably. 
For this reason, now-a-days, it is very important in many 

professions.  

Optimization problems may be linear (called linear 

optimization problems) or non-linear (called non-linear 

optimization problems). Non-linear optimization problems 

are generally very difficult to solve. 

Based on the problem characteristics, optimization 

problems are classified in the following: 

 

Constrained Optimization 

Many optimization problems require that some of the 
decision variables satisfy certain limitations, for instance, 

all the variables must be non-negative. Such types of 

problems     are said to be constrained optimization 

problems and defined as 
 

𝐦𝐢𝐧𝐢𝐦𝐢𝐳𝐞            𝐟 𝐱 , 𝐱 = (𝐱1, 𝐱2, 𝐱3, … . , 𝐱n) 

𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨          𝐠m 𝐱 ≤ 𝟎, 𝐦 = 𝟏, 𝟐, …… . . , 𝐧g 

𝐡m 𝐱 =  𝟎, 𝐦 = 𝐧g+𝟏, … , 𝐧g +𝐧h 

∀ 𝐱 ∊ 𝐑𝐧                                                                
(1) 

 

Unconstrained Optimization 

Many optimization problems place no restrictions on the 

values of that can be assigned to variables of the problem. 

The feasible space is simply the whole search space. Such 

types of problems are said to be unconstrained 

optimization problems and defined as 
 

𝐦𝐢𝐧𝐢𝐦𝐢𝐳𝐞 𝐟 𝐱 , 𝐱 ∀ 𝐑                 (2) 
 

where n is the dimension of x. 

 

Dynamic Optimization 
Many optimization problems have objective functions that 

change over time and such changes in objective function 

cause changes in the position of optima. These types of 

problems are said to be dynamic optimization problems 
and defined as 

 

  𝐦𝐢𝐧𝐢𝐦𝐢𝐳𝐞      𝐟 𝐱, 𝛡 𝐭  , 𝐱 =  𝐱𝟏, 𝐱𝟐, 𝐱𝟑, … , 𝐱𝐧 , 𝛡 𝐭  

   = (𝛡1 𝐭 , 𝛡2 𝐭 , … , 𝛡nϖ 𝐭 ) 

  𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨      𝐠m 𝐱 ≤ 𝟎, 𝐦 = 𝟏, 𝟐, …… . . , 𝐧g 

                                         𝐡m 𝐱 =  𝟎, 𝐦 = 𝐧g+𝟏, … , 𝐧g +𝐧h 

                                        ∀ 𝐱 ∊ 𝐑𝐧                                          
(3) 

 

where ϖ(t) is a vector of time-dependent objective 

function control parameters, x*(t) is the optimum found at 

time step t. There are two techniques to solve the 

problems: Global & Local optimization techniques. 

 

Global Optimization 

A global minimizer is defined as x* such that 
 

𝐟 𝐱∗ ≤ 𝐟 𝐱 , ∀𝐱 ∊ 𝐒                          (4) 
 

Where S is the search space & S = Rn  for unconstrained 

problems. 

Here the term global minimizer refers to the value 

f x ∗ , x ∗ is called the global minimizer.Some global 

minimizer requires a starting point z0 ∊ S and it will be 

able to find the global minimizer x ∗ if z0 ∊ S. 

 

Local Optimization: A local minimizer x ∗L of the region 
L, is defined as  

 

𝐟(𝐱∗) ≤ 𝐟 𝐱 , ∀𝐱 ∊ 𝐋                             (5) 

 

Where L is the subset of  Rn . 

Here, a local optimization method should guarantee that a 

local minimizer of the set is found. 

Finally, local optimization techniques try to find a local 

minimum and its corresponding local minimizer, whereas 
global optimization techniques seek to find a global 

minimum or lowest function value and its corresponding 

global minimizer. 

 

The Basic Model of PSO algorithm 

Kennedy and Eberhart first established a solution to the 

complex non-linear optimization problem by imitating the 

behaviour of bird flocks. They generated the concept of 

function-optimization by means of a particle swarm. 

Consider the global optimum of an n-dimensional function 

defined by 

 

𝐟 𝐱 =  𝐱𝟏, 𝐱𝟐, 𝐱𝟑, … , 𝐱𝐧 =  𝐟(𝐗)            (6) 

 

Where xi is the search variable, which represents the set of 

the free of the given functions. The aim is to find a value 

x ∗ such that the function f x ∗  is either a maxima or a 

minima in the search space. 

Consider a function given by 

 

f1 = (x1 +  x2)2                                                (7) 
 

And          f2 = x1sin(4*π*x1) – x2sin(4*π*x2)        (8) 
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From the figure 1(a), it is the clear that the global minima 

of the function f1 is at (x1,x2) = (0,0),i.e., at the origin of 

function f1 in the search space. That means it is a unimodel 

function, which has only one minimum. However, to find 

the global optimum is not so easy for multi-model 

functions, which have multiple local minima. Figure 1 (b) 

shows the function which has a rough search space with 
multiple peaks, so many agents have to start from different 

initial locations and continue exploring the search space 

until at least one agent reach the global optimal position. 

During this process all agents can communicate and share 

their information among themselves. This thesis discusses 

how to solve the multi-model function problems. 
 

The Particle Swarm Optimization (PSO) algorithm is a 

multi-agent parallel search technique which maintains a 

swarm of particles and each particle represents a potential 

solution in the swarm. All particles fly through a 

multidimensional search space where each particle is 

adjusting its position according to its own experience and 

that of neighbours. Suppose denote the position vector of 

particle in the multidimensional search space (i.e. ) at time 

step , then the position of each particle is updated in the 

search space by 

𝐱𝐢
𝐭+𝟏 

= 𝐱𝐢
𝐭 
 + 𝐯𝐢

𝐭+𝟏 with 𝐱𝐢
𝟎 

 

where,vi
t is the velocity vector of particle that drives the 

optimization process and reflects both the own experience 

knowledge and the social experience knowledge from the 

all particles; U(xmax , xmin ) is the uniform distribution 

where xmax  and xmin  are its minimum and maximum 

values respectively. 
 

Therefore, in a PSO method, all particles are initiated 

randomly and evaluated to compute fitness together with 

finding the personal best (best value of each particle) and 

global best (best value of particle in the entire swarm). 

After that a loop starts to find an optimum solution. In the 

loop, first the particles’ velocity is updated by the personal 
and global bests, and then each particle’s position is 

updated by the current velocity. The loop is ended with a 

stopping criterion predetermined in advance. 

Basically, two PSO algorithms, namely the Global Best 

(gbest) and Local Best (lbest) PSO, have been developed 

which differ in the size of their neighbourhoods. These 
algorithms are discussed in Sections respectively. 

 

3.1.1 Global Best PSO 

The global best PSO (or gbest PSO) is a method where the 

position of each particle is influenced by the best-fit 

particle in the entire swarm. It uses a star social network 

topology where the social information obtained from all 

particles in the entire swarm. In this method each 

individual particle,i∊[1,,,,,n] where n>1 has a current 

position in search space xi,a current velocity,vi,and a 

personal best position in search space,Pbest,i corresponds to 

the position in search space where particle i has the 

smallest value as determined by the objective function f , 

considering a minimization problem. In addition, the 

position yielding the lowest value amongst all the personal 

best is called the global best position which is denoted by 

Gbest . The following equations define how the personal 

and global best values are updated, respectively. 

Considering minimization problems, then the personal best 

position Pbest,i at the next step,t+1,where t ∊ [0,,,,N],is 
calculated as 

 

𝐏𝐛𝐞𝐬𝐭,𝐢 
𝐭+𝟏  =   

𝐏𝐛𝐞𝐬𝐭,𝐢
𝐭

𝐱𝐢
𝐭+𝟏

        
𝐢𝐟 𝐟 𝐱𝐢

𝐭+𝟏  > 𝐏𝐛𝐞𝐬𝐭,𝐢
𝐭

𝐢𝐟 𝐟(𝐱𝐢
𝐭+𝟏) ≤  𝐏𝐛𝐞𝐬𝐭,𝐢

𝐭
 (9) 

 

Where   Rn  → R is the fitness function.  

The global best position Gbest  at time step t, is calculated 

as  
 

𝐆𝐛𝐞𝐬𝐭 = min {𝐏𝐢
𝐛𝐞𝐬𝐭}, 𝐰𝐡𝐞𝐫𝐞 𝐢 ∊  𝟏, … . , 𝐧  𝐚𝐧𝐝 𝐧 > 1 

(10) 

 

Therefore it is important to note that the personal best 

Pbest,i is the best position that the individual particle i has 

visited since the first time step. On the other hand, the 

global best position Gbest is the best discovered position by 
any of the particle in the entire swarm. 
 

For gbest PSO method, the velocity of particle i is 

calculated by 

 

𝐯𝐢𝐣
𝐭+𝟏 = 𝐯𝐢𝐣

𝐭  + 𝐜𝟏𝐫𝟏𝐣
𝐭   𝐏𝐛𝐞𝐬𝐭,𝐢

𝐭 − 𝐱𝐢𝐣
𝐭  + 𝐜𝟐𝐫𝟐𝐣

𝐭  [𝐆𝐛𝐞𝐬𝐭 − 𝐱𝐢𝐣
𝐭 ]  

(11) 

 

 v          = is the velocity vector of particle i in dimension j 

at time t  

xij
t              = is the position vector of particle i in dimension j 

at time t 

Pbest ,i       = is the personal best position of particle i in 

dimension j found from initialization through time t  

Gbest         = is the global best position of particle i in 

dimension j found from initialization through time t  

c1 & c2 = are positive acceleration constants which are 
used to level the contributions of the cognitive and social 

components respectively 

r1j
t

 & r2j
t

 = are random numbers from uniform distributions 

U(0,1) at time t. 
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Local Best PSO 
The local best PSO (or lbest PSO) method only allows 

each particle to be influenced by the best-fit particle 

chosen from its neighbourhood, and it reflects a ring social 

topology. Here this social information exchanged within 

the neighbourhood of the particle, denoting local 

knowledge of the environment. In this case, the velocity of 

particle is calculated by 

 

 𝐯𝐢𝐣
𝐭+𝟏  =  𝐯𝐢𝐣

𝐭  + 𝐜𝟏𝐫𝟏𝐣
𝐭   𝐏𝐛𝐞𝐬𝐭,𝐢

𝐭 − 𝐱𝐢𝐣
𝐭  +  𝐜𝟐𝐫𝟐𝐣

𝐭  [𝐋𝐛𝐞𝐬𝐭

− 𝐱𝐢𝐣
𝐭 ]                    (𝟏𝟐) 

 

Where Lbest,i is the best position that any particle has had in 

the neighbourhood of particle i found from initialization 

through time t . 

Parameters: 

 

Swarm size 

Swarm size or population size is the number of particles n 

in the swarm. A big swarm generates larger parts of the 
search space to be covered per iteration. A large number of 

particles may reduce the number of iterations need to 

obtain a good optimization result. In contrast, huge 

amounts of particles increase the computational 

complexity per iteration, and more time consuming. From 

a number of empirical studies, it has been shown that most 

of the PSO implementations use an interval of for the 

swarm size. 

 

Iteration numbers 

The number of iterations to obtain a good result is also 
problem-dependent. A too low number of iterations may 

stop the search process prematurely, while too large 

iterations has the consequence of unnecessary added 

computational complexity and more time needed. 

 

Velocity Components 

The velocity components are very important for updating 

particle’s velocity. There are three terms of the particle’s 

velocity in equations mentioned above: 
 

1. The term 𝐯𝐢𝐣
𝐭  is called inertia component that provides a 

memory of the previous flight direction that means 

movement in the immediate past. This component 

represents as a momentum which prevents to drastically 

change the direction of the particles and to bias towards 

the current direction. 

2. The term 𝐜𝟏𝐫𝟏𝐣
𝐭   𝐏𝐛𝐞𝐬𝐭,𝐢

𝐭 − 𝐱𝐢𝐣
𝐭   is called cognitive 

component which measures the performance of the 

particles i relative to past performances. This component 

looks like an individual memory of the position that was 

the best for the particle. The effect of the cognitive 

component represents the tendency of individuals to return 

to positions that satisfied them most in the past. The 

cognitive component referred to as the nostalgia of the 

particle. 

3. The term 𝐜𝟐𝐫𝟐𝐣
𝐭   𝐆𝐛𝐞𝐬𝐭 − 𝐱𝐢𝐣

𝐭   for gbest PSO or 

𝐜𝟐𝐫𝟐𝐣
𝐭   𝐆𝐛𝐞𝐬𝐭 − 𝐱𝐢𝐣

𝐭    for lbest PSO is called social 

component which measures the performance of the 
particles i relative to a group of particles or neighbours. 

The social component’s effect is that each particle flies 

towards the best position found by the particle’s 

neighbourhood. 

 

Acceleration coefficients 

The acceleration coefficients c1 & c2 and , together with 

the random values r1 and r2 , maintain the stochastic 

influence of the cognitive and social components of the 

particle’s velocity respectively. The constant c1 expresses 

how much confidence a particle has in itself, while c2 

expresses how much confidence a particle has in its 
neighbours. There are some properties of c1 & c2. 

 

●When c1 = c2 = 0 then all particles continue flying at their 

current speed until they hit the search space’s boundary. 

Therefore ,from the equation  the velocity update equation 

is calculated as 

                         

𝐯𝐢𝐣
𝐭+𝟏  

= 𝐯𝐢𝐣
𝐭

                               (13) 

 

●When c1 > 0 & c2  = 0,all particles are independent. The 

velocity update will be  

 

𝐯𝐢𝐣
𝐭+𝟏 =  𝐯𝐢𝐣

𝐭 +  𝐜𝟏𝐫𝐢𝐣
𝐭  [𝐏𝐛𝐞𝐬𝐭,𝐢

𝐭 − 𝐱𝐢𝐣
𝐭 ]     (14) 

 

On the contrary, when c2 > 0 & c1 = 0,all particles are 

attracted to a single point (i.e., Gbest ) in the entire swarm 

and the update velocity will become  

 

𝐯𝐢𝐣
𝐭+𝟏 =  𝐯𝐢𝐣

𝐭 +  𝐜𝟏𝐫𝐢𝐣
𝐭  [𝐆𝐛𝐞𝐬𝐭,𝐢

𝐭 − 𝐱𝐢𝐣
𝐭 ]        (15) 

𝐯𝐢𝐣
𝐭+𝟏 =  𝐯𝐢𝐣

𝐭 +  𝐜𝟏𝐫𝐢𝐣
𝐭  [𝐋𝐛𝐞𝐬𝐭,𝐢

𝐭 − 𝐱𝐢𝐣
𝐭 ]          (16) 

 

●When  c1 = c2 ,all particles are attracted towards  the 

average of  𝐏𝐛𝐞𝐬𝐭,𝐢
𝐭  and 𝐆𝐛𝐞𝐬𝐭,𝐢

𝐭
    . 

●When c1>>c2, each particle is more strongly influenced 

by its personal best position, resulting in excessive 

wandering. In contrast, when then all particles are much 

more influenced by the global best position, which causes 

all particles to run prematurely to the optima. 

 

Improvements Factors & Analysis of Convergence: 

Usually, the particle velocities build up too fast and the 

maximum of the objective function is passed over. In PSO, 
particle velocity is very important, since it is the step size 

of the swarm. At each step, all particles proceed by 

adjusting the velocity that each particle moves in every 

dimension of the search space. There are two 

characteristics: exploration and exploitation. Exploration 

is the ability to explore different area of the search space 

for locating a good optimum, while exploitation is the 

ability to concentrate the search around a searching area 

for refining a hopeful solution. Therefore these two 

characteristics have to balance in a good optimization 

algorithm. When the velocity increases to large values, 

then particle’s positions update quickly. As a result, 
particles leave the boundaries of the search space and 



IJARCCE 
ISSN (Online) 2278-1021 

   ISSN (Print) 2319 5940 

 

International Journal of Advanced Research in Computer and Communication Engineering 

ISO 3297:2007 Certified 

Vol. 5, Issue 8, August 2016 
 

Copyright to IJARCCE                                    DOI 10.17148/IJARCCE.2016.5815                                                               89 

diverge. Therefore, to control this divergence, particles’ 
velocities are reduced in order to stay within boundary 

constraints. The following techniques have been 

developed to improve speed of convergence, to balance 

the exploration-exploitation trade-off, and to find a quality 

of solutions for the PSO: 

 

Velocity clamping 

Eberhart and Kennedy first introduced velocity clamping; 

it helps particles to stay within the boundary and to take 

reasonably step size in order to comb through the search 

space. Without this velocity clamping in the searching 

space the process will be prone to explode and particles’ 
positions change rapidly. Maximum velocity controls the 

granularity of the search space by clamping velocities and 

creates a better balance between global exploration and 

local exploitation 

 

 
Figure 2: Illustration of effects of Velocity Clamping for a 

particle in a two-dimensional search space 

 

Figure 4.1 illustrates how velocity clamping changes the 

step size as well as the direction when a particle moves in 

the process. In this figure , 𝐱𝐢
𝐭+𝟏and 𝐱′𝐢

𝐭+𝟏
denote  

respectively  the  position  of  particle  i  without  using  

velocity clamping and the result of velocity clamping. 

Now if a particle’s velocity goes beyond its specified 

maximum velocity Vmax this velocity is set to the value 

Vmax and then adjusted before the position update by, 

 

𝐯𝐢
𝐭+𝟏 = 𝐦𝐢𝐧  (𝐯′

𝐢
𝐭+𝟏

 , 𝐕𝐦𝐚𝐱)                         (17) 

 

where,  v′
i
t+1

 is calculated using equations given above 

If the maximum velocity Vmax is too large , the particle 

may move erratically and jump over the optimum solution 

.On the other hand if the Vmax  is too small , the particle’s 
moment is limited and the swarm may n ot explore 

efficiently or the swarm may become trapped in the local 

optimum. This problem can be solved when the maximum 

velocity is calculated by a fraction of the domain of the 

search space on each dimension by subtracting the lower 

bound from the upper bound, and is defined as 
 

𝐕𝐦𝐚𝐱  = ɛ ( 𝐱𝐦𝐚𝐱  – 𝐱𝐦𝐢𝐧  )                                  (18) 

Where 𝐱𝐦𝐚𝐱  & 𝐱𝐦𝐢𝐧   are respectively the maximum and 

minimum values of x, and ɛ ∊ [0,1]. For example, if ɛ = 

0.5 and x = [-150,150] on each dimension of the search 

space. Then the range of the search space is 300 per 

dimension and velocities, are then clamped to a percentage 

of that range according to equation, then the maximum 

velocity is Vmax  = 150. 
 

There is another problems when all velocities becomes 

equal to the maximum velocity𝐕𝐦𝐚𝐱.  To solve this 

problem, Vmax can be reduced over time. The initial steps 

starts with the large values of  𝐕𝐦𝐚𝐱  , and then it is 

decreased it over time. The advantage of velocity 
clamping is that it controls the explosion of the velocity in 

the searching space. On the other hand, the disadvantage is 

that, the best value of Vmax should be chosen for each 

different optimization problem using empirical techniques 

and finding the accurate value for the Vmax for the problem 

being solved is very critical and not simple, as a poorly 

chosen 𝐕𝐦𝐚𝐱  can lead to extremely poor performance. 

Finally, 𝐕𝐦𝐚𝐱  was introduced to prevent explosion and 
divergence. However, it has become unnecessary for 

convergence because of the use of the inertia weight ɷ and 

constriction factor χ. 

 

4.1.2. Inertia-weight: 

The inertia-weight, denoted by ɷ, is considered to replace 

Vmax by adjusting the influence of of the previous 

velocities in the process, i.e., it controls the momentum of 

the particles by weighing the contribution of the previous 

velocity. The inertia-weight ‘ɷ’ will at every step be 

multiplied by the velocity at the previous time step, i.e., 

vt
ij. Therefore, in the gbest PSO, the velocity equation of 

the particle i with the inertia-weight changes from 

equation to  

 

𝐯𝐢𝐣
𝐭+𝟏 = 𝛚𝐯𝐢𝐣

𝐭𝐜𝟏𝐫𝟏𝐣
𝐭   𝐏𝐛𝐞𝐬𝐭,𝐢

𝐭 − 𝐱𝐢𝐣
𝐭  +  𝐜𝟐𝐫𝟐𝐣

𝐭   𝐆𝐛𝐞𝐬𝐭 − 𝐱𝐢𝐣
𝐭  (19) 

 

In the lbest PSO, the velocity equation changes in a similar 

way as the above velocity equation do. 
 

The inertia-weight was first introduced by Shi & Eberhart 

in 1999 to reduce the velocity over time, to control the 

exploitations and explorations ability of the swarm, and to 

converge the swarm more accurately and efficiently 

compared to the equation. If ɷ is greater or equal to 1, 

then the velocity increases over time and particle can 

hardly change their direction to move back towards 

optimum, and the swarm diverges. If ɷ << 1, then little 

moment is only saved from the previous step and quick 
changes of directions are to set in the process. If ɷ = 0, 

particle velocity vanishes and all particles move without 

knowledge of the previous velocity in each step. 
 

The inertia weight can be implemented as a fixed value or 

dynamically change values. Initial implementations of ɷ 

used as a fixed value for the whole process for the all 
particles. But now dynamically inertia value is used 

because this parameters controls the exploration and 
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exploitation of the search space. Usually the large inertia 
value is high at first, which allows all the particles to move 

freely in the search space at the initial step and decreases 

over time. Therefore the process is shifted from the 

explorative mode to the exploitative mode. This 

decreasing inertia weight has produced good results in 

many optimization problems. To control the balance 

between local and global exploration, to obtain faster 

convergence, and to reach an optimum, the inertia weight 

whose value decreases linearly with the iteration number 

is set according to the following equation 

 

𝛚𝐭+𝟏 =  𝛚𝐦𝐚𝐱 −  
𝛚𝐦𝐚𝐱− 𝛚𝐦𝐢𝐧

𝐭𝐦𝐚𝐱
 𝐭  , 𝛚𝐦𝐚𝐱  >  𝛚𝐦𝐢𝐧  (20) 

 

where 𝛚𝐦𝐚𝐱  &  𝛚𝐦𝐢𝐧are the initial and the final values of 

the inertia weight  respectively. 

𝐭𝐦𝐚𝐱  is the maximum iteration  number. 

And 𝐭 is the current iteration number. 
 

Generally, the inertia weight ɷ decreases from 0.9 to 0.4 

over the entire process. 

Van der Bergh and EngelBrechet, Trelea have defined a 

condition, that is 

 

𝛚 > 
𝟏

𝟐
  𝐜𝟏 + 𝐜𝟐 −  𝟏                                            (21) 

 

guarantees the convergence. Divergent or cyclic behaviour 

can occur in this process if this condition is not satisfied. 

The inertia-weight technique is very useful to ensure 

convergence. However, there is a disadvantage of this 

method is that once the inertia weight is decreased, it 
cannot increase if the swarm needs to search the new 

areas. This method is not able to recover its exploration 

mode. 

 

4.1.3. Constriction Factor: 

This technique introduced a new parameter ‘χ’  known as 

the constriction factor. The constriction factor coefficient 

was developed by Clerc. This coefficient is extremely 

important to control the exploration and exploitation 

tradeoffs, to ensure the convergence behaviour, and also to 

exclude the inertia weight ɷ and the maximum velocity  

𝐕𝐦𝐚𝐱. Clerc’s proposed velocity updation of the particle i 
for the j dimension is calculated as,  
 

𝐯𝐢𝐣
𝐭+𝟏 = 𝛘[𝐯𝐢𝐣

𝐭 + ∅𝟏 𝐏𝐛𝐞𝐬𝐭,𝐢
𝐭 − 𝐱𝐢𝐣

𝐭  + ∅𝟐(𝐆𝐛𝐞𝐬𝐭 − 𝐱𝐢𝐣
𝐭 )] (22) 

 

where 

       𝛘 =  
𝟐

 𝟐− ∅−  ∅𝟐− 𝟒∅ 
,                                          

       ∅ = ∅ 1 +  ∅2 

            ∅ 1 = c1r1  

And ∅ 2 = c2r2. 
 

If 𝛟  <  4, then all the particles would slowly spiral 

towards  around the best solution in the searching space 

without the convergence guarantee. If 𝛟 > 4, then all 
particles converged faster and guaranteed. 

Eberhart & Shi empirically illustrated that if the velocity 
clamping and constriction coefficient are used together, 

that tends to obtain the faster convergence rate. 

 

Guaranteed Convergence PSO: 

When the current position of the particle coincides with 

the global best position, then the moves away from this 

point if its previous velocity is non-zero. In other words, 

when xt
ij = Pt

best,i = Gt
best,i , then the velocity updates 

depends only on the value of ɷvt
ij. Now if the previous 

velocities of particles are close to zero, all particles stop 
moving once and they catch up with the global best 

position, which can lead to the premature convergence of 

the processes.  This doesn’t even guaranteed that the 

process has converged to a local minima, it only means 

that all the particles have converged to the best position in 

the entire swarm. This lead to the stagnation of the search 

process which the PSO algorithm can overcome by forcing 

the global best position to change when  xt
ij = Pt

best,i = 

Gt
best,i . 

 

4.2. Boundary Condition: 
Sometimes, it is important that the search space has some 

limitations for swarm to avoid exploding. In other words, 

particles are allowed to fly randomly beyond the search 

space and generate the invalid solutions but only 

sometimes. Generally, velocity clamping technique is used 

to limit the velocity of the particle to the maximum 

velocity 𝐕𝐦𝐚𝐱  . The maximum velocity, 𝐕𝐦𝐚𝐱  the inertia 

weight ɷ, and the constriction coefficients value χ do not 

always confines the particles to the solution space. These 

parameters are not able to provide the information of the 

space in which the searching particles stays. Besides, some 
particles still runs away from the solution space even 

having good choice of parameters 𝐕𝐦𝐚𝐱. 

 

There are two main difficulties connected with previous 

velocity techniques: 

 

1) The choice of the suitable value for 𝐕𝐦𝐚𝐱can be non-

trivial and also very important for the overall performance 

of the method. 

2) The previous velocity techniques cannot provide 
information about how the particles are enforced to stay 

within the selected space all the time.  

To overcome this problem, boundary conditions of the 

PSO algorithm, this will be parameter free, efficient and 

also reliable. 

To solve this problem, different types of the boundary 

conditions (BC) have been introduced and the unique 

features that distinguish each boundary condition are 

showed in fig . 

 

These boundary conditions forms two groups: 
 

1. Restricted BC:  This includes namely, absorbing, 

reflecting, and damping. 

2. Unrestricted BC: This includes namely, invisible, 

invisible/reflecting, and invisible/damping. 
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Figure 3: Various boundary conditions in PSO 

 

 
Fig 4: Six different BCs for a 2D search space, ’x’ & ‘v’ 

represent the modified position and the velocity 
respectively and r is a random factor [0,1]. 

 

The six BCs are discussed as follows: 

 

1. Absorbing Boundary Condition: 

When a particle goes outside the solution space in one of 

the dimensions, the particle is relocated at the wall of the 

solution space and the velocity of the particle is set to zero 
in that dimension as illustrated in fig. 4(a). This means 

that, in this condition, such kinetic energy of the particle is 

absorbed by the soft wall so that the particle will return to 

the solution space to find the optimum solution. 

 

2. Reflecting Boundary Condition: 

When a particle goes outside the solution space in one of 

the dimensions, the particle is relocated at the wall of the 

solution space and the sign of the velocity of the particle is 

changed in the opposite direction in that dimension as 

illustrated in fig. 4(b), This means that the particle is 

reflected by the hard wall and then it will move back 
towards he solution space to find the optimum solution. 

 

3. Damping Boundary Condition: 

When a particle goes outside the solution space in one of 

the dimensions, the particle is relocated at the wall of the 

solution space and the sign of the velocity of the particle is 

changed in the opposite direction in that dimension with a 

random coefficient between 0 and 1 as illustrated in fig 

4(c). Thus Damping BC acts very similar as the reflecting 

boundary condition except randomly determined part of 

the energy is lost because of the imperfect reflection. 
 

4. Invisible Boundary Condition: 

In this condition, the particle is considered to stay outside 

the solution space, while the fitness evaluation of that 

position is skipped  and a bad fitness value is assigned to it 

as illustrated in fig 4(d). Thus the attraction of the personal 

and global best positions will counteract the particle’s 

momentum, and ultimately pull it back inside the solution 

space. 

 

5. Invisible/Reflecting Boundary Condition: 

In this condition, the particle is considered to stay outside 
the solution space, while the fitness evaluation of that 

position is skipped and a bad fitness value is assigned to it 

as illustrated in fig 4(e). Also, the sign of the velocity of 

the particle is changed in the opposite direction so that the 

momentum of the particle is reversed  to accelerate it back 

toward in the solution space. 

 

6. Invisible/Damping Boundary Condition: 

In this condition, the particle is considered to stay outside 

the solution space, while the fitness evaluation of that 

position is skipped  and a bad fitness value is assigned to it 
as illustrated in fig 4(f). Also, the velocity of the particle is 

changed in the opposite direction with a random 

coefficient between 0 and 1 in that dimension so that the 

reversed momentum of the particle which accelerates it 

back towards in the solution space is damped. 

 

Results: 

To solve this problem, anew parameter is introduced to the 

PSO algorithm. Let Ƭ be the index of the global best 

particle, so that  
 

𝐲𝛕 = 𝐆best                                                          (23) 
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A new velocity update equation for the globally best 

positioned particle, yƬ has been suggested to keep yƬ 

moving until it has reached the local minimum 

                       

𝐯𝛕𝐣
𝐭+𝟏 =  −𝐱𝛕𝐣

𝐭 +  𝐆𝐛𝐞𝐬𝐭
𝐭 +  𝛚𝐯𝛕𝐣

𝐭 +  𝛒𝐭(𝟏 −  𝟐𝐫𝟐𝐣
𝐭 )  (24) 

 

where 

         𝛒𝐭       Is a scaling factor and causes the PSO to 

perform a random search in an area surrounding   

                         The global best position Pbest .                             

     −𝐱𝛕𝐣
𝐭              Reset the particle position to the position 

𝐆𝐛𝐞𝐬𝐭,𝐢
𝐭

 

      𝛚𝐯𝛕𝐣
𝐭             Represents the current search direction. 

     𝛒𝐭 𝟏 −  𝟐𝐫𝟐𝐣
𝐭     Generates a random sample from a 

sample space with side length 𝟐𝛒𝐭 

 

Combining the position update equation (3.4) and the new 

velocity update equation  for the global best particle τ  
yields the new position update equation  

 

𝐱𝛕𝐣
𝐭+𝟏 =  𝐆𝐛𝐞𝐬𝐭

𝐭 +  𝛚𝐯𝛕𝐣
𝐭 +  𝛒𝐭(𝟏 − 𝟐𝐫𝟐

𝐭)                  (25) 

 
While all the other particle in the swarm continue using 

the normal current velocity update and the position update 

equation respectively. 

 

The parameter rho controls the diameters of the search 

space and the value of rho  is adapted after each time step 

using  

 

  𝛒𝟎 = 𝟏. 𝟎 

𝛒𝐭+𝟏 =   

𝟐𝛒𝐭

     𝟎. 𝟓𝛒𝐭

𝛒𝐭

         
𝐢𝐟 #𝐬𝐮𝐜𝐜𝐞𝐬𝐬𝐞𝐬  𝐭 > ∈𝐬

𝐢𝐟 #𝐟𝐚𝐢𝐥𝐮𝐫𝐞𝐬  𝐭 > ∈𝐟

𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞

        (26) 

 

Where  #successes and #failures respectively denote the 
number of consecutive successes and failures, and a 

failures is defined as f(Gbest
t+1 ) = f(Gbest

t ). The following 

conditions must also be implemented to ensure that the 

equation is well defined: 
 

#successes (t+1) > #successes(t) → #failures(t+1) = 0  
 

And 
 

#failures (t+1) > #failures(t) → #successes(t+1) = 0 (27) 

 

Therefore, when a success occurs, the failures count set to 

zero and similarly when a failure occurs, then the success 

count is reset. 
 

GCPSO uses adaptive ρ to obtain the optimal of the 

sampling volume given the current state of the algorithm. 

If a specific value of ρ repeatedly results in a success, then 

a large sampling volume is selected to increase the 

maximum distance travelled in one step. On the other 

hand, when ρ produces ∈f  consecutive failures, then the 

sampling volume is too large and must be consequently 

reduced. Finally, stagnation can be totally prevented if ρt > 
0 for all steps. 

Application of Particle Swarm Optimization: 

This section discusses the various application areas of the 

PSO methodology. 

 

Kennedy & Eberhart first established the practical 

application PSO in 1995 in the field of neural network 

training and was reported together with the algorithm 

itself. PSO have been successfully used across a wide 

range of applications, for instance, telecommunication, 

system control, design, data mining, etc. The modern 
developed PSO is used for the advanced problematic 

scenarios whereas the original PSO algorithm was used 

mainly to solve the unconstrained, single-objective 

optimization problems. 

 

Various areas where PSO is applied are: 

 

6.1. ANTENNAS DESIGN: 

The optimal control and designed of the phased arrays, 

broadband antenna design and modeling, reflector 

antenna, optimization of the reflect array antenna, antenna 

modeling, design of a periodic antenna arrays, near-field 
antenna measurement, synthesis of antenna arrays, 

adaptive antenna arrays, design of implantable antennas 

and so on. 

 

6.2. SIGNAL PROCESSING: 

Pattern recognition of the flatness signal, design of IIR 

filters, 2D IIR filters, speech coding, non-linear adaptive 

filter, Costas arrays, blind detection, bind source 

separation, distributed odour source localization, and so 

on. 

 

6.3. NETWORKING: 
Radar network, Bluetooth network, TCP network control, 

WDM telecommunication control, grouped and delayed 

broadcasting, bandwidth reservation, transmission network 

planning, voltage regulation, network reconfiguration and 

expansion, economic dispatch problem, distributed 

generation. 

 

6.4. IMAGE & GRPAHICS: 

Planning landmarks in orthodontic x-ray images, 

pedestrian detection & tracking, stop-sign detection, image 
registration, microwave imaging, pixel classification, 

texture synthesis, scene matching, contrast enhancement, 

character recognition, image noise cancellation, and so on.  

 

6.5. POWER GENERATION & CONTROLLING: 

 Automatic generation control, power transformer 

protection, power loss minimization, load forecasting, 

STATCOM power system, hybrid power generation 

system, power system performance optimization, 

secondary voltage control, power control & optimization, 

large-scale power plant control, control of photovoltaic 

system, analysis of power control signals, generation 
planning and restructuring, production costing, and so on. 
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6.6. FUZZY SYSTEMS, CLUSTERING & DATA-

MINING: 

Design of neurofuzzy networks, fuzzy rule extraction, 

fuzzy control, fuzzy modeling, design of hierarchical 

fuzzy systems, dimensionality reduction, documents and 

information clustering, dynamic clustering, cascading 

classifiers, fuzzy clustering, data mining, feature selection, 

and so on. 

 

6.7. OPTIMIZATION: 

Electrical motor optimization, optimization of internal 

combustion engines, floor planning, packing & knapsack, 

knight cover problems, layout optimization, path 
optimization, urban planning, FPGA placement and 

routing.  

 

6.8. PREDICTION & FORECASTING: 

Water quality prediction & classification, predicition of 

chaotic system, streamflow forecast, ecological models, 

electric load forecasting, time series predicition, battery 

pack state of charge estimation, predicition of elephant 

migration, urban traffic flow forecasting, and so on. 

 

 6.9. ROBOTICS: 
Control of robotics manipulators and arms, motion 

planning and control, odour source localization, swarm 

robotics, unmanned vehicle navigation, path planning, 

unsupervised robotic learning, environment mapping, 

voice control of robots, collective robotic search, obstacle 

avoidance, soccer playing, transport robot, and so on. 

 

6.10. DESIGN & MODELLING: 

Conceptual design, electromagnetic case, induction 

heating cooker design, VLSI design, power system, RF 

circuit synthesis, worst case electronic design, motor 

design, antenna design, transmission lines, identifying 
ARMAX models, power plant and systems, chaotic time 

series modelling, model order reduction, ultra wideband 

channel modelling, fliter design, thermal process system 

identification, and so on. 

 

6.11. BIOMEDICAL: 

Human tremor analysis for the diagnosis of Perkinson’s 

disease, inference of gene regulatory networks, RNA 

secondary structure determination, biomechanics 

optimization, DNA motif detection, cancer classification, 

survival prediction, biomarker selection, protein structure 
predicition and docking, drug design, radio therapy 

planning, analysis of brain magneto encephalography data, 

phylogenetic tree reconstruction, and so on. 

 

CONCLUSION 

 

This paper discussed the basic Particle Swarm 

Optimization algorithm, geometrical and mathematical 

explanation of PSO, particles’ movement and the velocity 

update in the search space, the acceleration coefficients 

and particles’.  

A set of convergence techniques, i.e. velocity clamping, 
inertia weight and constriction coefficient techniques 

which can be used to improve speed of convergences and 

control the exploration and exploitation abilities of the 

entire swarm, was illustrated. The Guaranteed 

Convergence PSO (GCPSO) algorithm was analyzed. This 

algorithm is very important to solve a problem when all 

particles face premature convergence or stagnation in the 

search process. Boundary conditions were presented which 

are very useful in the PSO algorithm. 

The Multi-Start PSO (MSPSO) algorithm attempts to 

detect when the PSO has found lack of diversity. Once 

lack of diversity is found, the algorithm re-starts the 
algorithm with new randomly chosen initial positions for 

the particles. The Multi-phase PSO (MPPSO) algorithm 

partitions the main swarm into sub-swarms or subgroups, 

where each sub-swarm performs a different task, exhibits a 

different behaviour and so on. Then the swarms cooperate 

to solve the problem by sharing the best solutions they 

have discovered in their respective sub-swarms. During 

the optimization process, high speed of convergence 

sometimes generates a quick loss of diversity which lead 

to undesirable premature convergence. To solve this 

problem, the perturbed particle swarm algorithm (PPSO) 
illustrated in this chapter. The Multi-Objective PSO 

(MOPSO) algorithm is very important when an 

optimization problem has several objective functions. One 

discrete optimization problem was solved by the Binary 

PSO (BPSO) algorithm. 

The PSO algorithm has some problems that ought to be 

resolved. Therefore, the future works on the PSO 

algorithm will probably concentrate on the following: 

1.    Find a particular PSO algorithm which can be 

expected to provide good performance. 

2.    Combine the PSO algorithm with other optimization 

methods to improve the accuracy. 
3.     Use this algorithm to solve the non- convex 

optimization problems. 
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